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Abstract

In this paper we construct a simple full-covariance Gaussian prior for person-
specific facial pose at a number of points on the face. When the relative orientation
and translation of the camera and head are known, this simple model permits tri-
angulation and correspondence to be expressed in a straightforward manner: For
orthographic cameras, triangulating points amounts to linear regression, and for
perspective cameras, we iteratively approach the solution by linearizing about the
current pose. The correspondence problem under this prior is NP-hard, but we
have achieved good correspondence by initializing using linear assignment, then
searching locally using pairwise swaps in the correspondence matrix. Using fa-
cial motion capture data, we show that previous models of facial pose relying on
subspace constraints can produce significant errors unless high numbers of dimen-
sions are used, and evaluate the performance of our prior for both the triangulation
and correspondence problems.

1 Introduction
Facial motion capture is used in the film and games industries to acquire actors’ perfor-
mances for later retargeting to digital characters. A variety of techniques have been de-
veloped to acquire facial motion. Active sensing methods [1] have acquired relatively
high-resolution facial shape, but such systems are unsuitable for performance capture
due to the small performance space and use of projectors shining directly into the per-
formers’ faces. Infrared optical systems like those from Vicon [2] use many cameras
with motion capture markers (reflective spheres) affixed to actors faces. Such systems
can obtain high-quality results, but these markers can physically interfere with an ac-
tor’s performance. Many recent works have attempted to track facial motion using un-
obtrusive “makeup” markers [3], or no markers at all [4, 5]. However, most such work
relies on low-dimensional subspace models and monocular weak perspective camera
models, making them less appropriate for high precision data capture required by the
entertainment industry.

∗This paper was written in 2008 but subsequently unpublished until 2012. References may be out of date.
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In this paper we demonstrate a straightforward method to obtain high-precision
facial motion capture from 2D tracks in multiple perspective views, with missing or
uncertain data, using a 3D prior previously trained under controlled conditions. We
confine ourselves principally to the problem of inferring the most likely pose given
incomplete observations, where the missing data has already been labeled. In contrast
to previous works that reconstruct face shapes from monocular views without a preex-
isting prior, we also solve for correspondence between the 2D tracked points and the
prior model (and implicitly between views). We do not specifically address outlier re-
jection: In our experiments, the missing data was manually identified, but estimates of
confidence (as in Torresani et al. [6], for example) could also be used to label missing
data. We also do not address head orientation or the 2D tracking problem explicitly,
but we believe our model can be extended to incorporate these as well.

In this paper we will demonstrate that a full covariance prior can be used success-
fully without a subspace model, provide a concise formulation of the MAP triangula-
tion estimate for such a prior using multiple views, and describe a linear approxima-
tion for the perspective case that works well even for proximal cameras. However, our
primary contribution is a Bayesian approach to formulating the correspondence prob-
lem, and an approximate solution to this formulation using linear assignment and local
search that has been evaluated using facial motion capture data.

2 Related work
Recent work has emphasized low-rank factorization of facial motion into shape and
pose. A seminal work by Blanz and Vetter [7] acquired models using 3D scanning, and
used nonlinear optimization to fit to images. More recently, similar morphable models
have been applied to monocular tracking [8] without a precomputed prior model. Tor-
resani et al. [9] and Brand [10, 4, 3] present frameworks that work directly on video
data, solving the tracking problem as part of the process. Del Bue et al. [11] have
incorporated stereo views into a similar approach, but do not address the correspon-
dence problem. In contrast to these approaches, we construct a prior in advance and
use stereo views when available, but our approach handles monocular views and fully
inferred points gracefully as well. In this sense our approach has more in common
with active appearance models, which have been demonstrated to work well under oc-
clusion [5], and also have been extended to stereo views [12] with full 3D models [13].
However, all of the aforementioned works use subspace models with a low number of
modes. In Section 6 we will consider the optimum reconstructions possible with such
models.

Bedekar and Haralick [14] have previously approached the problems of multiview
triangulation and correspondence from a Bayesian perspective. Starink and Backer [15]
address the correspondence problem using simulated annealing. Li et al. [16] and
Chui and Rangajaran [17] specifically considered the case of non-rigid point corre-
spondence. In contrast, our approach takes advantage of a Gaussian prior for the de-
formations of the underlying 3D model.
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3 Prior acquisition
At the core of our approach, we assume that a person-specific prior can be constructed
with high precision in a “calibration” process. This prior is then used to infer the
correct shape from noisy, partially occluded 2D tracking data. We represent face shape
at a fixed number n of 3D points, representing a given pose using the column vector
Θ with length 3n. Using a set of calibrated 3D poses, we construct a full-covariance
Gaussian prior:

P (Θ) = NΘ(µ,Σ) (1)

We acquired our test and training data sets using a Vicon [2] optical motion capture
system. Infra-red reflective markers were placed on an actor’s face, and a number
of performances were recorded using the system. Our test data consisted of dialog
performed in a variety of emotional states. We used 1000 frames for our test set and
1964 frames for the training set. We stabilized the data by creating a coordinate system
out of three points which move the least on the face. Specifically, we used the tops of
the left and right ears, and a point on the bridge of the nose. Due to the stabilization
of these points, the covariance matrix computed from this data is noninvertible. Even
the stabilization points do still have some motion along certain axes, so rather than
removing them from the training set we add isotropic noise (σ = .01 cm) along the
diagonal to eliminate the zero singular values. The results given in Section 6 use a
covariance matrix conditioned in this way.

Our 2D test data was created by projecting the 3D points through virtual ortho-
graphic and perspective cameras. In order to evaluate our approach under severe per-
spective distortion, our virtual perspective cameras used a wide angle lens (with a 127
degree angle of view) and were placed just 16cm from the center of the head.

4 Orthographic triangulation with a Gaussian prior
Let mi represent the number of points visible in view i, and pi the length-2mi vector
of 2D points seen from view i. We represent the transformation of 3D model points to
2D view points as

pi = ViRi(MiΘ + βi) + n, (2)

where the 3n×3n matrix Mi and 3n-vector β represent the camera rotation and trans-
lation, Ri is a 3n × 3n permutation matrix giving the correspondence of points in the
model to points in view i (Section 5), Vi is a 2m × 3n submatrix of the identity ma-
trix that projects out the n−m occluded points and the z-coordinate of the remaining
points, and n is zero-mean Gaussian noise. In Section 5 we will solve for Ri, but for
simplicity, in this section we simplify this as

pi = NiΘ + bi + n, (3)

where Ni = ViRiMi is a 3n by 2mi block-diagonal matrix and bi = ViRiβi is a
length-2mi translation vector. Let σ represent the standard deviation of the pixel error,
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so that we characterize the probability model for our observations as:

P (pi|Θ) = Npi(NiΘ + bi, σ
2I) (4)

Given some observed p = {p1,p2, · · · }, we wish to find the maximum a posteriori
configuration of the model. Using Bayes’ rule, the negative log likelihood is

−L(Θ|p) ∼ −
∑
i

L(pi|Θ)− L(Θ) (5)

The log likelihoods are expanded as follows:

−L(Θ) =
1

2
(Θ− µ)TΣ−1(Θ− µ) + ZΣ (6)

−L(pi|Θ) = ‖NiΘ + bi − pi‖2/(2σ2) + Zσ (7)

(where ZΣ and Zσ are integration constants that do not depend on Θ and can therefore
be ignored in the formulation that follows.)

We wish to maximize the (log) likelihood of Θ. This is accomplished by differen-
tiating by Θ and setting to zero:

−dL(Θ|pi)
dΘ

=
∑
i

NT
i (NiΘ + bi − pi)/σ

2 + Σ−1(Θ− µ) = 0 (8)

(∑
i

NT
i Ni + σ2Σ−1

)
Θ =

∑
i

NT
i (pi − bi) + σ2Σ−1µ (9)

Equation 9 is linear in Θ and can therefore be solved easily. Although in practice
the visibility of points pi (and therefore the matrices Ni) may change from one frame
to the next, if they change infrequently then many of the terms can be precomputed,
including the inverse of the left hand side of Equation 9:

A =

(∑
i

NT
i Ni + σ2Σ−1

)−1
(10)

B =

(
Σ
∑
i

NT
i Ni/σ

2 + I

)−1
(11)

Θ =
∑
i

(ANT
i )pi −

∑
i

(ANT
i )bi + Bµ (12)

The solution is just a single matrix multiply per view and one vector addition, since all
the matrices ANT

i and the vector −
∑
i(ANT

i )bi + Bµ can be precomputed.
As in previous works applying factorization [8], Θ can be replaced by Sθ, where

S is a reduced-dimensionality shape basis, and if the Gaussian model is not known a
priori, Σ and µ can be updated online in order to progressively improve the model over
time. Reducing the dimensionality with PCA reduces the size of many of the above
matrices, resulting in improved performance at the cost of some accuracy. However, in
Section 6 we will argue that the number of required bases is much larger than suggested
by previous authors.
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4.1 Extension to perspective cameras
Although the algorithm described in the previous section is an exact maximum a pos-
teriori estimator for orthographic cameras, it does not hold for perspective cameras.
However, this approach can be used in an iterative optimization of the full nonlinear
function. In this setting Ni is linearized using the first-order Taylor expansion of the
perspective transform at Θ. Θ is initialized to either µ (on the first frame of a perfor-
mance capture) or the pose on the previous frame Θt−1. The perspective transform is
linearized each iteration, and the value of Θ is updated using Equation 9. As long as
points do not cross the eye plane, the system converges quickly, to machine precision in
1-3 iterations when initializing using the previous frame’s pose, and only 6-7 iterations
even when initializing to µ on each frame.

In order to linearize the perspective transform, we note that a perspective camera
takes 4-d homogeneous points and projects them into 2-d, typically written as a 4 × 4
matrix C. We can decompose C as follows:

C =

 C̄ t
CT

3 b
hT c

 (13)

where C̄ is the upper-left 2 × 3 submatrix of C, t is a column 2-vector, C3 and h are
column 3-vectors, and b and c are scalars. Then, we rewrite the standard homogeneous
transformation as

p2 = (C̄p3 + t)(hTp3 + c)−1 (14)

(Note that C3 and b vanish, because we discard the z-coordinate when projecting to
2-d.)

Differentiating and massaging to standard form we find the Jacobian:

dp2

dp3
=

C̄

hTp3 + c
− (C̄p3 + t)hT

(hTp3 + c)2
(15)

Notice that, as expected, when h = 0 and c = 1, the transformation is orthographic,
and the Jacobian is equal to the 2 × 3 submatrix C̄. This approximation is stable as
long as hTp3 + c does not approach zero.

5 A Bayesian approach for correspondence
The preceding analysis presumes that the correspondences are known a priori, but the
prior shape model is also useful in estimating the correspondences as well.

In this section we return to the complete projection model for view i given by
Equation 2, in which the correspondence from 3D model points to points in 2D view
i is given by Ri. We wish to solve for the most likely permutation by maximizing
P (Ri|pi). This expression is marginalized over all possible models Θ:

P (Ri|pi) ∼ P (pi|Ri) =

∫
R3n

P (pi|Ri,Θ)P (Θ)dΘ (16)
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We can compute this integral in closed form as follows:

P (pi|Ri) =

∫
R3n

P (pi|Ri,Θ)P (Θ)dΘ (17)

=

∫
R3n

NViRi(MiΘ+βi)(pi, σ
2I)NΘ(µ,Σ)dΘ (18)

The two Gaussians vary over different random variables, so we have to use a change
of variables to align to the camera of view i: Define Ω = RiMiΘ. Furthermore, Ω
is partitioned into the variables that are “observed” (with noise) Ωo = ViΩ and the
remainder of “unobserved” variables Ωu that are truly hidden. Now we can proceed:

P (pi|Ri) =

∫
R3n

NΩo+ViRiβi(pi, σ
2I)NΩ(RiMiµ,RiMiΣ(RiMi)

T )dΩ (19)

Since the first of these Gaussians is independent of Ωu, we integrate first over those
variables, then over the rest:∫
R2m

NΩo
(pi −ViRiβi, σ

2I)

 ∫
R3n−2m

NΩ(RiMiµ,RiMiΣ(RiMi)
T )dΩu

 dΩo

(20)
The inner integral is the marginal distribution over Ωu, where the mean is simply the
first 2mi entries of RiMiµ, and the covariance is the upper 2mi × 2mi submatrix of
RiMiΣ(RiMi)

T . We apply Vi to concisely represent these as:

µ∗o = ViRiMiµ (21)
Σ∗o = ViRiMiΣ(ViRiMi)

T (22)

P (pi|Ri) =

∫
R2m

NΩo
(pi −ViRiβi, σ

2I)NΩo
(µ∗o,Σ

∗
o)dΩo (23)

The product of Gaussians can now be simplified [18] as

P (pi|Ri) =

∫
R2m

Npi−ViRiβi
(µ∗o, σ

2I + Σ∗o)NΩo
(µc,Σc)dΩo (24)

= Npi−ViRiβi(µ
∗
o, σ

2I + Σ∗o)

∫
R2m

NΩo(µc,Σc)dΩo (25)

= Npi(µ
∗
o + ViRiβi, σ

2I + Σ∗o) (26)
= Npi(ViRi(Miµ+ βi),ViRi(σ

2I + MiΣMT
i )(ViRi)

T ) (27)

(The new variables µc and Σc introduced in Equation 24 can also be expressed in
terms of the means and covariances of the original Gaussians, but as that distribution
is marginalized out in the subsequent equations, we omit the full formula here for
brevity.)

Multiple frames of data can be used to estimate correspondence, by taking the
product of Equation 27 over all frames: P (pi|Ri) =

∏
t P (pi(t)|Ri).

In special cases, the log of Equation 27 can be shown equivalent to the quadratic as-
signment problem (see Appendix A), which is known to be NP-hard [19]. The complete
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problem is therefore challenging to solve optimally. However, we have utilized the fol-
lowing approach, and found that it works well in practice: First we approximate the
solution using linear assignment (i.e. assuming independence between points), which
often produces the correct result and otherwise is usually a short distance away from
the optimal solution. Then we approach the optimum using a short local search, by
swapping pairs of point assignments that increase the likelihood given by Equation 27.
Although not guaranteed to find the optimal solution, we have found that these initial-
ization and local search approaches often reach the optimum in less than a dozen swaps
(see Section 6).

Note that this approach solves for correspondences from a view to the model, rather
than explicitly between views. Therefore it is performed independently per view, and
correspondences between views can be recovered implicitly. 1

5.1 Initialization via linear assignment
The linear assignment problem can be expressed [20] as the minimization of a product
of weights and costs

∑
j,k C(j, k)X(j, k), subject to the constraint that the weights X

are a binary permutation matrix. The optimum can be found in polynomial time using
linear programming by relaxing the constraints on X to∑

k

X(j, k) = 1 ∀j (28)∑
j

X(j, k) = 1 ∀k (29)

X(j, k) ≥ 0 ∀j, k (30)

To convert Equation 27 to a form suitable for linear assignment, we take the neg-
ative log likelihood of a single assignment (i.e. a single column of Ri) marginalized
over all other point positions. This leads to the following formula for entries of the cost
matrix:

C(j, k) = (pi(j) − µ∗(k) − βi(k))
T (σ2I + Σ∗(k))

−1(pi(j) − µ∗(k) − βi(k)) (31)

where pi(j) is the jth 2D point in pi, µ∗(k) is the kth 2D mean in Niµ, βi(k) is the kth
2D translation in βi, and Σ∗(k) is the kth 2 × 2 block along the diagonal of NiΣNT

i .
Note that we can omit the log normalization constant from these costs, since their sum
contributes a constant amount to the final cost. For similar reasons, entries of the matrix
corresponding to missing data (j > mi) are set to 0, since there is neither a cost nor
benefit to these assignments. Again, in the case where multiple frames are used to
estimate correspondence, we simply sum up the cost matrices for each frame.

1Since we have marginalized out the model, we can no longer linearize a perspective projection about
Θ as in Section 4.1. Therefore when solving for correspondence for perspective cameras we have used the
Taylor series expansion at µ instead.
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5.2 Optimization via pairwise swaps
Starting from the initial permutation obtained via linear assignment, we modify Ri via
all n(n−1) pairwise swaps of rows and columns, and test the resulting cost function in
Equation 27 to find the best pairwise swap. This process is iterated until convergence,
ie. no better configuration can be found.

The costliest computation in the process is the inversion of the covariance matrix
ViRi(σ

2I + MiΣMT
i )(ViRi)

T , which changes for each pairwise swap in Ri. How-
ever, we can accelerate the method considerably by classifying the swaps into three
types:

1. Swapping two occluded points j0 > mi and j1 > mi;

2. Swapping two observed points j0 ≤ mi and j1 ≤ mi; and

3. Swapping an observed point j0 ≤ mi with an occluded point j1 > mi.

The first type of swap does not alter the matrix or indeed the entire cost function, and
we can therefore omit computations for all (n−m)(n−m−1) of these swaps entirely.

The second type of swap does alter the cost function, but as it merely permutes
rows and columns in the covariance matrix, the inverse is also such a permutation. To
see this, let S represent such a swap, and note that S is orthonormal, so ST = S−1,
so (SAST )−1 = SA−1ST for any invertible A. Also note that the determinant is
unchanged by the swap, so the normalization constant need not be recomputed.

The third type is the only one that actually requires nontrivial computation, but
when n −m is small we use Schur complements to compute it efficiently. The Schur
complement relates the inverse of a large matrix to the inverses of two smaller matri-
ces, and is ordinarily used when inverting large matrices. Here however, we apply it
less conventionally, inverting a matrix using the precomputed inverse of another large
matrix and the inverse of a smaller matrix that varies.

Specifically, we precompute the 2n× 2n matrix

Q−1 = (Vxy(σ2I + MiΣMT
i )VT

xy)−1 (32)

where Vxy is defined as the 2n×3n submatrix of I that extracts the x and y coordinates
of each point (i.e. V for a view in which no points are occluded). Now construct the
permutation RQ such that the upper left block of RQQRT

Q is the matrix to be inverted,
ViRi(σ

2I + MiΣMT
i )(ViRi)

T . Then compute:

(RQQRT
Q)−1 = RQQ−1RT

Q =

(
A B
BT D

)
, (33)

partitioned into blocks A : 2m× 2m, B : 2m× 2(n−m), and D : 2(n−m)× 2(n−
m). Finally, take the Schur complement of D in (RQQRT

Q)−1 to obtain the desired
inverse:

(ViRi(σ
2I + MiΣMT

i )(ViRi)
T )−1 = A−BD−1BT (34)

In short, for each pairwise swap of the third type, we only need to invert a matrix
of size 2(n −mi) × 2(n −mi); all other computations are matrix multiplications or
permutations.
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Table 1: RMS and max errors (in cm) for optimal reconstruction of face shapes tracked
at 127 points using different numbers of PCA bases. Note that even for 10 modes, the
maximum error for a point can be as much as .3cm. When reprojected at film or HD
resolution, such an error represents a deviation of up to 30 pixels.

K = 4 [4] 6 [3] 10 [8] 21 40 100 300
RMS error 0.066 0.063 0.045 0.029 0.015 0.005 0.001
max error 0.191 0.202 0.296 0.085 0.056 0.015 0.003

6 Results
In this section we present an analysis of PCA projection for face shapes with different
numbers of modes, and results for our triangulation and correspondence approaches.

6.1 Optimal reconstruction using PCA bases
Much recent work in face tracking has relied on low-dimensional subspace models to
constrain the solution space of poses. This restriction is quite powerful, as it makes it
possible to learn pose variation even without training data. However, in this paper we
argue that such models are not sufficient for high-quality facial motion capture, since
even optimal reconstructions using such a model have significant error. In particular,
the traditional use of SVD to determine the number of modes uses an L2 error norm.
We believe a better metric is to minimize the L∞ error norm, to constrain the worst-
case deviation of a reconstruction from ground truth. To assess the performance of
different numbers of bases we applied PCA to our training data set and tested RMS
and max errors for different numbers of PCA bases, summarized in Table 1.

As the number of modes increases, online learning of the model and pose becomes
more challenging (especially with unknown camera pose). Hence we use the full-
dimensional Gaussian, but we do not attempt to learn the prior model or camera pose
online, relying instead on high-quality training data to construct our prior.

6.2 Triangulation
To evaluate our triangulation approach, we applied it against our test data in four set-
tings, using 1 or 2 virtual cameras with either orthographic and perspective projections,
with σ = 1×10−5. For each setting, we increased the number of occluded points from
0% to 25%, changing randomly each frame. The results of these tests are shown in
Figure 1. RMS error is below 1mm in all cases. Max error is considerably better for
multiple views, but even with 15% of points occluded in a single perspective view, the
maximum error over all 1000 frames of test data is less than 0.5cm.

6.3 Correspondence
To evaluate our approach for solving the correspondence problem, we ran our algo-
rithm 200 times on different single frames of test data in 4 settings: orthographic and
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Figure 1: RMS (black crosses) and maximum error (blue triangles) rates (in cm) for our
triangulation approach, graphed vs. number of occluded points for one orthographic
camera (top left), one perspective camera (bottom right), two orthographic cameras
(top right), and two perspective cameras (bottom right).

perspective cameras, with all points visible and with 15% points occluded. Linear as-
signment took approximately 3s per frame, while pairwise swaps took anywhere from
90s to 140s per frame to converge, using a 3.0GHz Intel Core Duo CPU. The results of
these tests are shown in Figures 2 and 3.

In all four settings, linear assignment works fairly well for initialization, as the
majority of frames have 10 or fewer incorrect correspondences. Unsurprisingly, per-
formance is better when all points are visible.

The pairwise swap local search performs extremely well when all points are visible,
but poorly in the occluded case. In fact, for perspective cameras with occlusions there
are often more incorrect correspondences after pairwise swaps than before. We plan to
investigate this case more fully in future work.

We have not yet investigated the use of multiple frames for estimating a single
correspondence, but we expect error rates to drop considerably when multiple frames
are available for estimation.

7 Conclusion
In this work we have presented the use of a full-covariance Gaussian prior to aid in tri-
angulation and correspondence in the presence of missing data. We have demonstrated
that such a prior can be used successfully without a subspace model, and the resulting
MAP triangulation estimate is simple to compute for either orthographic or perspective
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Figure 2: Histograms of number of incorrect correspondences after initialization with
linear assignment, for an orthographic view with all points visible (top left), an ortho-
graphic view with 15% of the points randomly occluded on each frame (top right), a
perspective view with 0% of points randomly occluded on each frame (bottom left),
and a perspective view with 15% of points randomly occluded on each frame. All
histograms are unnormalized, with 200 sample frames.

cameras. Furthermore we believe our analysis and formulation of the correspondence
problem is a particularly useful contribution, and our approximate solution is both fast
and accurate.

In the future we hope to expand the functionality of our approach, for example
by exploring the use of a full-covariance Gaussian prior to estimate both camera pose
and model pose simultaneously, applying online learning techniques, and integrating
tracking from video directly into our formulation, to aid in robust occlusion-handling.
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A Quadratic assignment problem
The quadratic assignment problem can be defined as follows [19]:

min
X∈Π

f(X) = Tr
[
(AXB + C)XT

]
(35)

where Π is the space of permutation matrices, and Tr is the trace operator.
Consider the special case of Equation 27 in which the model consists of 2D points,

viewed in 1-dimensional cameras. Thus µ is a 2n-vector and Σ is a 2n×2n symmetric
matrix, while p is an n-vector. Note that due to the structure of V and R, the odd
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elements of Miµ + βi and odd rows and columns of σ2I + MiΣMT
i will always be

projected out, so we can write the equivalent expression

P (p|R) = Np(Rx,RWR) (36)

where R is now a general n × n permutation matrix, x is a constant length n-vector,
W is a constant symmetric n× n matrix. (We omit subscripts i for clarity.)

Taking the negative log, and letting α1 and α2 represent constant scale and offset
factors we find

−α1L(p|R) + α2 = (p−Rx)T (RWRT )−1(p−Rx) (37)
= Tr

[
(p−Rx)(p−Rx)TRW−1RT

]
(38)

= Tr
[
(ppT − 2RxpT + RxxTRT )RW−1RT

]
(39)

= Tr
[
ppTRW−1RT

]
−2Tr

[
RxpTRW−1RT

]
+ Tr

[
RxxTW−1RT

]
(40)

Using the property Tr [AB] = Tr [BA], simplify to

−α1L(p|R)+α2 = Tr
[
ppTRW−1RT

]
−2Tr

[
W−1xpTR

]
+Tr

[
xxTW−1] (41)

The third term is constant w.r.t. R and can be folded into α2, and using the property
Tr
[
AT
]

= Tr [A], this simplifies again to

−α1L(p|R) + α2 = Tr
[
ppTRW−1RT

]
− 2Tr

[
pxTW−1RT

]
(42)

= Tr
[
ppTRW−1RT − 2pxTW−1RT

]
(43)

= Tr
[
(ppTRW−1 − 2pxTW−1)RT

]
(44)

Thus we have a QAP of the form in Equation 35 such that

A = ppT (45)
B = W−1 (46)
C = −2pxTW−1. (47)

We conjecture that the full correspondence problem described in Section 5 is there-
fore also in the same complexity equivalence class, but have no formal proof at this
time.
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